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CHAPTER I 

INTRODUCTION 

I The design of many spacecraft control systems is based upon a rigid 

body model but actual spacecraft will have some flexible dynamics. When 

the flexible modes are outside the bandwidth of the control system, they 

will not affect control system stability. For some spacecraft, the 

bending modes may spillover into the control system bandwidth. This 

spillover can lead to unwanted jet firings and may destabilize the sys- 

tem. 

The Space Shuttle is an example of a spacecraft in which flexibility 

is of concern. The Shuttle's control system assumes rigid body dynam- 

ics. The bending modes of the orbiter are well outside the control 

bandwidth and so are not a problem. When the Shuttle is manipulating 

large payloads on-orbit, however, flexible modes can be low enough in 

frequency to spillover into the control system bandwidth. 

The Shuttle is capable of handling payloads that weigh as much as 

65,000 lbs. which is over a quarter of a typical Shuttle on-orbit mass 

of 226,000 lbs. Such large payloads attached to the Shuttle by its 

long, flexible robot arm can lead to low-frequency, large-amplitude 

dynamic interaction. These bending modes are picked up by the Shuttle's 

sensors and can lead to undesirable and sometimes destabilizing jet fir- 

i ngs. 
r 

Before each flight, a range of possible payload-arm-autopilot con- 

figurations are simulated on a computer to determine the stable operat- 

ing points. For large payloads, the stable operating range can be very 

restricted. It is therefore highly desirable to come up with a way of 
reducing the effect of low-frequency dynamics and thus expanding. the 
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range of stable payload operation. It is also desirable that the sol- 

ution be a change in the control system software rather than a hardware 

change as this is much cheaper and easier to implement. 

This thesis investigates the use of notch f i 1 ters centered on the 

estimated bending frequencies to reduce the effect of low-frequency 

Shuttle-payload dynamic interaction. The Shuttle-payload dynamics that 

are studied are with payloads attached to the Shuttle's Remote Manipula- 

tor System (RHS) . Other payload-orbiter connections such as payloads 

pivoted out of the cargo bay on a tilt table can lead to low-frequency 

bending modes. Payloads attached to the RHS will, however, present 

greater problems in that the bending modes will be hard to predict and 

will tend to vary with time as the RHS changes in orientation. 

The thesis is organized into the following chapters: 

Chapter 2 looks at the problems caused by flexibility in the space- 

craft and briefly reviews a few techniques for reducing bending mode 

spi 1 lover. 

Chapter 3 presents a technique for the identification of bending 

mode f requenc i es. 

Chapter 4 presents the design of the notch filters. 

Chapter 5 is a review of the Space Shuttle and its on-orbit control 
system. 

Chapter 6 uses a simplified model of the Shuttle and its control 

system along with a describing function representation of the nonlinear 

phase plane controller to analyze the effect of the notch filters on the 
closed-loop system performance. 

0 



Chapter 7 presents s imulat ion r e s u l t s  for two la rge  payloads 

attached t o  the S h u t t l e ' s  RflS w i t h  and without the  notch f i l t e r s .  

Chapter 8 gives conclusions and a few recommendations f o r  fur ther  

work. 
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CHAPTER 2 

FLEXIBILITY IN SPACECRAFT 

2.1 Introduction 

This chapter investigates the effect flexibility has on the closed- 

loop attitude control of spacecraft. The way uncontrolled bending modes 

can alter the performance of a simple control system made up of a linear 

state estimator and 1 inear state feedback is shown in detai 1 .  Control 

and observation spillover o f  residual flexible modes is shown to be 

destabilizing. Reducing the spillover of residual flexible motion 

should therefore improve attitude control of spacecraft. 

I n  theory, flexible structures require an infinite number of modes 

to completely describe their motion. Flexible structures are distrib- 

uted parameter systems whose dynamics can be represented by partial dif- 

ferential equations. In practice, however, the structure is modelled 

w i t h  its mass lumped at a finite number of node points. Using finite 

element methods, the structure can be represented by a second-order 

matrix differential equation, 

M q + D i + S q = f  

where 

q = generalized displacement vector 

M = mass matrix 

D = damping matrix 

S = stiffness matrix 

f = input force vector 

(2.1) 
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The system can now be described by, 

(2.8) 

or 

x = A x + B u  (2.9) 

The sensors are assumed to measure various linear and angular posi- 

tions and rates. The measurements can be represented as, 

Y = H, q + H, 4 (2.10) 

y H,@ + H,@ { (2.11) 

y = c x  

(2.12) 

(2.13) 

The state space representation of a flexible structure given by 

Equations 2.9 and 2.13 is a convenient form to work with. However, 

including all the modes from the finite element model can lead to very 

large matrices. This model may often be too large to be practical in 

the evaluation and design of the control system. 

A smaller, evaluation model is often constructed as a truncated ver- 

sion o f  the finite element model. This truncation can be as simple as 
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The finite element model can be transformed into modal coordinates by, 

q = @ ?  (2.2) 

where 

T, = modal displacement vector 

Q, = mode shape matrix 

The matrix of mode shapes satisfies the equation, 

where I i s  the identity matrix. The system written in modal coordinates 

becomes, 

Multiplying by CDT gives, 

With proportional or light damping, this i s  often rewritten as, 

where 
R = diagonal matrix of natural frequencies 

t = diagonal matrix of damping ratios 

To put the system into state space f o r m  let, 

x = [;I 



including only the low frequency modes. More sophisticatea techniques 

involve the use of quadratic cost functions to rank the importance of 

each mode to various constraints. The evaluation model is made large 

enough to retain an accurate representation of the structure but not so 

large as to be unwieldy to use. 

The number of controlled states in most spacecraft is quite small. 

Flight computer limitations allow only the rigid-body and perhaps a few 

of the dominant bending modes to be tracked and controlled. The system 

model can be divided into controlled and residual states. The states 

used in a feedback control system will be called the controlled states, 

and the remaining states called residual states. Using this division, 

the states in Eq. 2.9 can be rearranged as, 

and Eq 2.13 becomes, 

(2.14) 

(2.15) 

The state estimator provides estimates of the system's states to the 

feedback controller given the set of measurements. The estimated state, 

x,, follows the differential equation, 
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'e = A, x, + B, u + K(Y - C, Xe) 

x, = (A, - K CJX, + B, U + K Y 

Let the estimation error, e, be defined as, 

e = x, - xe 

(2.16) 

(2.17) 

(2.18) i 

The governing differential equation for the estimation error i s ,  
I 

e = (A, - K C,) (x, - x,) - K C, x, (2.20) 
l 

e = (A, - K C,)e - K C, x, (2.21) -1 

If the real part of the eigenvalues of (A, - K Cc) are all negative, 

then the estimator will be stable. Without residual mode dynamics and 

other noise, the estimation error will decay to zero. The residual I 

states act as a driving term to the error equation. I 

The full-state feedback controller takes the measured states, if 
available, or the estimated states and produces the command vector u. 

If all the states are available, the input u is, 

U C - G X ,  (2.22) 

making the closed-loop system, 

i ,  = (A, - B, G)x, = A,, X, (2.23) 
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I The performance of the closed-loop system depends upon the eigenvalues 

of A,,. With full-state feedback, the eigenvalues can be placed arbi- 

trar i ly. 

When the states are not directly available the estimated states, x,, 
are used to determine the input, 

u = - G x ,  

making the system, 

X, = A, X, - B, G X, 

which can be rewritten as, 

x, = (A, - B, G)x, + B, G e 

The residual state dynamics can be represented by, 

I x, = A, x, - B, G(x, - e) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

Combining Equations 2.21, 2.26, and 2.27 gives the entire closed- 

loop system, 

(2.28) 
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I f  no residual modes were present, the system would be, 

= E ]  = 1‘”‘ A,-KC, B c G ] [ ~ ]  = A,, z 

The eigenvalues o f  a matrix o f  the form, 

(2.29) 

(2.30) 

so the eigenvalues o f  the matrix A,, in Eq. 2.29 are, 

eig(A,,) = eig(A, - B, G)eig(A, - K C,) (2.31) 

which are just the poles o f  the controller and the poles o f  the state 

estimator. I f  the controller and estimator designs are stable then the 

closed-loop system will be stable. 

With residual modes the system is, 

(2.32) 



or 

(2.33) 

If either A,, or A,, equal zero, then the eigenvalues of the entire 

system would be the poles of the closed-loop system without the residual 

modes, eig(A,,), plus the poles of the residual modes, eig(A,,). In 
other words, the residual modes would add its poles to the closed-loop 

system without changing the control system poles. 

If A12 and A,, are non-zero, then the poles of the control system 

and of the residual modes will be changed. This means that the control 

system will not perform as it was designed, possibly going unstable. 

The submatrix AI, in Eq. 2.33 represents residual mode dynamics 

picked up by the sensors. This spillover of  residual mode dynamics into 

the measurements is called observation spillover. Similarly, the subma- 

t r i x  A,, in Eq. 2.33 represents the excitation of the residual modes by 

the contrdl input and is called control spillover. 

With no observation spillover, the residual mode dynamics can be 

represented as, 

x, = A, X, - B, G X, (2.34) 

The control spillover does not change the poles of the residual mode 

system, but acts as a driving term. The residual modes will be excited, 

but will not be driven unstable. The controlled states and estimation 

error will act as if no residual modes exist if there i s  no observation 



spillover. Exciting the residual modes can often be undesirable, but 

without residual mode dynamics spilling over into the measurements, the 

system will remain stable. 

If there is observation spillover but no control spillover, the 

estimation error will be, 

e = ( A c  - K C,)e - K C, x, (2.35) 

The residual modes will act as a driving noise in the estimation error 
equation. This in turn will affect the performance of the control sys- 

tem with 

x, = (A, - B, G)x,  + B, G e (2.36) 

the controlled state dynamics being driven by the estimation error which 

is driven by the residual mode dynamics. The poles of the estimator and 

con 

ent 

res 

mat 

and 

roller, however, will not change. 

Control and observation spillover can degrade the performance o f  the 

re closed-loop system. Control spillover leads to excitation of the 

dual modes. Observation spillover will tend to increase the esti- 

on error which in turn will affect the system states. Both control 

observation spillover must be present, however, to drive the closed- 

loop system unstable. 

S D i  1 lover 

For a simple linear system, spillover of residual mode dynamics 

moves the poles of the closed-loop system which can destabilize the sys- 

tem. In nonlinear systems, it i s  harder to mathematically show the 

effect of spillover. Many spacecraft use on-off thrusters, making their 
control systems h i g h l y  nonlinear. For such spacecraft, unmodelled bend- 
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ing dynamics picked up by the sensors can lead to jet firings which fur- 

ther excite the residual modes. As in linear systems, this combination 

of observation and control spillover can destabilize the system. 

By reducing spillover, the real system should behave more like the 

designed model of the system and potential instabilities from unmodelled 

dynamics should be reduced. 

2.6.1 Placina Sensors at N o w  

One way of reducing Observation spi 1 lover is to prevent residual 

mode dynamics from being measured by sensors. If the residua dynamics 

were known very well, the sensors could be placed at or near the nodes 

of the residual modes. There would be little or no observat on spill- 

over of a residual mode that has a node near to or at a sensor location. 

This is impractical for many spacecraft. It assumes that residual 

mode shapes will be accurately known, that these modes will not change 

w,ith time, and that the control system designer has control over the 

placement of sensors. These assumptions will not be true for many 

spacecraft. In particular, for the Space Shuttle only one sensor, the 

Inertial Measurement Unit (IMU), i s  used and its position is fixed in 

the Shuttle. This method therefore would not be useful. 

vation S~illover~ 

A technique has been developed that can remove observation or con- 

trol spillover for certain systems. For control spillover annihilation, 

the desired control, u, will differ from the actual control, u, by 
- 

- 
U = D U  (2.37) 
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This makes the controlled and residual state system, Eq. 2.14, 
I .  

x, = A,x, + B,Du 

ir = A,x, + B,Du 

Control spillover will be eliminated if B,D=O. 

chosen to 

min IIu-iII = min IIu-DuII 
U D 

subject to B,D = 0 

(2.38) 

(2.39) 

The actual control is 

(2.40) 

Elimination of observation spillover is accomplished in a similar 

manner by changing the measurement signal as 

- 
Y'TY (2.41) 

The estimation error equation, Eq. 2.21, will now become 

6 = ( A ~  - K T c,)e - (K T c,) X, (2.42) 

Observation spillover will be eliminated if T C, = 0. As before, the 

measurement used will be chosen to 

subject to T C, = 0 

For this technique to work the system (A,,B,D) must be controllable 

or (A,,TC,) must be observable. This method will only work for systems 

with a large number o f  overlapping control inputs or many overlapping 

sensors and when the spillover from only a few residual modes is to be 

22 



removed. For every residual mode eliminated, the dimension of the con- 

trol or measurement space will be reduced by two. Eliminating only a 

few residual modes wi 1 1  therefore seriously restrict the control or 

estimation of the system states. 

For the Space Shuttle, only one sensor that measures attitude is 

used, making observation spillover annihilation impossible. While there 

are many availible control jets, they are all located on the effectively 

rigid orbiter itself. The controls on the robot arm and attached pay- 

load are not availible to the attitude control system so the available 

control can be modelled as acting at one point. Control spillover anni- 

hilation therefore is also impossible. By disallowing all control 

action that excites the residual bending modes, there will be no way to 

control the orbiter itself. 

Notch filtering the measurement signal is another way of reducing 

observation spillover. Notch filters are bandstop filters that reject a 

narrow band of frequency. Running the measurement signal through a 

series of notch filters that are centered on the residual bending mode 

frequencies will drastically reduce the observation spillover and help 

to stabilize the system. The narrower the notch, the less effect the 

filters will have on the rest of the measurement signal. Notch filter- 

ing is a good way of reducing observation spillover without hurting the 

estimation of the controlled states. 

Notch f i lter ing wi 1 1  work well when the residual bending mode fre- 

quencies are well known. Observation spillover will increase sharply 

with error between the residual mode frequencies and the notch filter 

center frequencies. In conjunction with notch filters, on-board fre- 

quency estimation should be used which can lock onto and track the bend- 

ing frequencies. This thesis looks at using notch filters combined with 
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real-time frequency identification to reduce observation spillover and 

stabilize flexible spacecraft. Specifically, this technique is designed 

and evaluated for the Space Shuttle with flexibly attached payloads. 



CHAPTER 3 

IDENTIFICATION OF BENDING MODE FREQUENCIES 

In dealing with the problems caused by flexibility, it is important 

to know the frequencies of the bending modes. The design approach of 
this thesis uses notch filters where accurate knowledge of the bending 

frequencies is crucial. 

Accurate a priori knowledge of the bending frequencies is, however, 

unrealistic. Computer models of spacecraft dynamics are valuable analy- 

sis tools but should not be depended upon to accurately predict bending 

frequencies. The models will have simplifications and perhaps more 

importantly, the spacecraft itself will be constantly changing. A 
spacecraft's configuration changes in a flight: solar panels will 

rotate, fuel burns will alter mass properties, etc., having a compli- 

cated effect upon the bending modes. 

It is therefore highly desirable to be able to identify bending fre- 
quencies in flight using the spacecraft's various sensors. In partic- 

ular, this thesis looks at identifying bending frequencies for the Space 
Shuttle using its Inertial Measurement Unit (IHU). The identification 

scheme used in this design was therefore chosen with digital computer 

implementation in mind. Two alternative frequency identification meth- 
ods are also briefly reviewed. 
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The first design constraint is that the method chosen must be able 

to identify frequencies to a relatively high accuracy. The identified 

frequencies will be sent to narrow notch filters, so small errors in the 
estimated frequencies can lead to dramatically reduced performance. In 

addition to locking on to the bending frequencies, the frequency estima- 

tor must be able to track frequencies as they vary with time. 

It is reasonable to assume that rough predictions of the bending 

frequencies will be availible for most spacecraft. Therefore the iden- 

tification scheme should be able to use this a priori knowledge, when 

available, to improve its performance. 

Finally the frequency identification scheme in this thesis is 

designed with the Space Shuttle in mind. Therefore only methods that 

can be implemented on a digital computer are considered. 

One of the most common methods of identifying the frequencies of a 

signal is by computing its power spectral density (PSD). The power 

spectral density breaks the signal up into its frequency components. 

Spikes in the PSD will represent the bending modes. 

The power spectral density is defined as the Fourier Transform of 

the autocorrelation function, 

where 
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I 

with E[ 3 representing the expected value. The PSD is commonly calcu- 

lated by averaging periodograms of a signal where a periodogram is 

defined as 

where T is the time span of the sample. As T becomes large and as the 

number of periodograms averaged becomes large, then the averaged perio- 

dogram approaches the power spectral density. 

On a digital computer, the PSD is calculated by taking a large time 

sequence and dividing it up into smaller sequences. Each of these time 

records is put through a Fast Fourier Transform (FFT) to calculate its 

periodogram. These periodograms are then averaged to approximate the 

power spectral density of the signal. 

Computing the power spectral density of the measurement signal was 

rejected as the frequency identification scheme because it has serious 

drawbacks for our application. First, it is mainly used in off-line 

processing. It is not a recursive algorithm; it requires large 

sequences to be manipulated (transformed, averaged, filtered, etc.). A 

spacecraft's digital flight computer i s  usually not well equipped for 

such applications. 

A second drawback is the difficulty of resolving frequencies with a 

PSD. With a Discrete Fourier Transform, the frequency resolution is 

equal to 1/T where T is the total time span of the sample. 

As an example, the Space Shuttle may get bending frequencies 

down to about 0.04 Hz with large payloads attached to ifs Remote 

Manipulator System (RMS) .  The frequency resolution required for 

notch filtering would be around 0.002 Hz.  For a decent PSD let 10 
periodograms be averaged. T h i s  means each periodogram must be at 
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least 500 seconds long and the total sample length would be over 

an hour. 

A 

2 cos(o,t*) 
c 

c Var i ab 1 e 
Frequency 

Obtaining good frequency resolution complicates the problems of lim- 

ited computer capacity and leads to long identification times making the 

tracking of time varying frequencies nearly impossible. The power spec- 

tral density as a frequency identification method was therefore 

rejected. 

Oscillator 

3.4 Phase-Lock L o w  

' 

Phase-lock loops (PLL) can be used to lock onto and track oscillat- 

ing signals. A P L L  takes the output of a variable frequency oscillator 

and compares it to the input signal. The difference is used to adjust 

the variable oscillator until it locks onto the signal. The signal's 

frequency and phase can thus be identified and tracked. The block dia- 

gram of a PLL is shown in Figure 3.1. 

Figure 3.1 Phare-Lock ~ O D  
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The phase detector takes the input signal and ouput of the variable 

frequency oscillator and produces a signal related to the error in fre- 

quency and phase. A diagram of the phase detector is shown in Figure 

3.2. The input signal is multiplied with the variable frequency oscil- 

lator output. This results in two terms, the sine of the frequency and 

phase difference and the sine of the frequency and phase sum. The sec- 

ond of these terms is el iminated by a lowpass f i 1 ter. When error in 

frequency and phase is small, the sine of the error will be approximate- 

ly the error itself and the PLL will act almost linearly. 

- Figure 3.2 Phase DetectPr 

In many diagrams of a PLL the variable frequency oscillator is 

labeled a voltage controlled oscillator (VCO). A VCO produces an oscil- 

lating signal at a center frequency plus small frequency and phase cor- 

rections controlled by an input voltage. On a digital computer, the 

variable frequency oscillator would be designed to act as a VCO. A ten- 

ter frequency, w C ,  is chosen as the best guess of  the frequency of the 

input signal. The closer wc is to the actual frequency, the better the 

PLL will perform. 
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The filter section can be a simple gain or a proportional plus inte- 

gral gain, or even chosen to make the PLL act as an extended Kalman fil- 

ter. The filter section can best be understood by looking at a 

linearized PLL block diagram, figure 3.3. 

Figure 3.3 Lioearized P U  

If G(s) is chosen to be a simple gain, K ,  then the closed-loop linear- 

ized system will be 

(3 4) 

If K is positive, then the phase will exponentially approach the 

signal's phase with time constant 1 / K .  

If an integral gain is added to the f i 1 ter, G (s)=K,+K,/s then the 

closed-loop system would be 
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where K, and K, are chosen for desired performance. Hore complicated 

filters can be designed for more refined performance. These linearized 

filter designs are then analyzed with the nonlinear PLL. 

Phase-lock loops are very effective at identifying and tracking fre- 

quencies in real-time. They have been used in a wide variety of appli- 

cations. PLL's are particulary good if implemented in hardware rather 

than software as they are availible as integrated circuits making them 

cheap and easy to use. 

Phase-lock loops use a priori knowledge of bending mode frequencies. 

The closer the center frequency of the variable oscillator is to the 

actual 'bending frequency, the faster the PLL will lock onto the right 

frequency. Better a priori information will therefore lead to better 

performance. 

In the phase-lock loop described above, it was assumed that the 

amplitude of the input signal was known. This will not be true in prac- 

tice. Imprecise knowledge of the amplitude wi 1 have a direct impact on 

the performance of the PLL. Macala5 suggests using bandpass filters to 

isolate each bending mode and then using a lim ter on each mode to give 

a constant, known amplitude. 

Using phase-lock loops is often recommended for real-time frequency 

identification. A series of PLL's can be used with center frequencies 

set near the expected bending frequencies and they will lock onto and 

track the bending modes in flight. For hardware implementation, PLL's 

seem to be the best choice for real-time frequency identification. For 
this thesis, however, a software identification scheme is desired. 

While PLL's could be designed and implemented in software, a simplier 

method was chosen and is described in the next section. 

31 



3.5 Bandoas_s Filters and Zero-Crossing H e m r e m e n f  I 

I 

The frequency identification method chosen for this thesis is very I 

straightforward. A series of bandpass filters are used to isolate each 

bending mode. The time between zero-crossings for each of these modes 

is measured and is equal to half the signal's period. Every time the 

signal crosses zero, there will be a new measurement of the signal fre- 

quency. This is shown in Figure 3.4 for one bending mode. 
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Figure 3.4 Zero-Crossing Measurement 
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3.6 BandDass Filter Design 

The bandpass f i 1 ters are designed as in Stearns6 by taking an analog 
lowpass filter, and then converting to a digital formulation. 

Given an analog lowpass f i 1 ter with transfer function H,, (s) having 

a cutoff frequency of ut, an analog bandpass filter can be constructed 

with the frequency transformation, 

with 

wc = w2 - w 1  

where w 1  and w2 are the passband frequencies. 

(3.6) 

(3.7) 

A bilinear transform can be used to convert from the analog bandpass 

filter to a digital bandpass filter. The bilinear transform will dis- 

tort the frequencies, so the passband frequencies in the analog filter 

are prewarped to obtain the desired digital passband frequencies. This 

prewarping is accomplished by 

w l l  = tan(wlT/2) 

w2 I = tan (w,T/2) 
(3 8) 

where T is the time-step of the digital filter. The digital transfer 

function, H,,,, can now be obtained from the transformation 

2-1 

z+l 
HDBP(zj = iiBp(---) (3.9) 

where z is the z-transform variable which is defined as 
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2 = esT (3. I O )  

This discrete transfer function can now be directly used to obtain the I 

filter's difference equation. 1 

loa M a s s  Filter Design I 

Three common types of lowpass filters are Butterworth, Chebyshev, 

and Elliptic. Figure 3.5 shows the frequency response of these filters. 
The Butterworth design has a smooth frequency response. The Chebyshev I 

design allows ripples in the passband but has a sharper cutoff than the 

Butterworth. The Elliptic filter allows ripples in both the passband 

and stopband but has a still sharper cutoff. These characteristics will 
be retained when the lowpass filter is transformed into a bandpass fil- l I 

I 

1 ter. Ripples in the passband of the lowpass filter will lead to ripples 

in the passband of the bandpass filter, etc. 

I 

I 

IH,? ( 5 )  I 
t 

F requency Frequency ' -5 ' r e q u r x y  

Figure 3.5 iowpass Filter Prctotypes 



For frequency i d e n t i f i c a t i o n ,  the bandpass f i l t e r s  w i l l  be centered 

on the  a p r i o r i  guesses of t he  bending mode f requenc ies .  The bandpass 

f i l t e r s  should be designed t o  p rov ide  more a t t e n u a t i o n  for  f requenc ies  

f u r t h e r  away f rom t h e  passband. T h i s  means r i p p l e s  i n  t h e  stopbands a r e  

undes i rab le  and t h e  E l l i p t i c  f i l t e r  w i l l  be r u l e d  out. Another reason 

f o r  r e j e c t i n g  t h e  E l l i p t i c  f i l t e r  i s  t h a t  i t  i s  by f a r  t h e  hardes t  o f  

t h e  t h r e e  t o  design. 

Dec id ing  between t h e  Bu t te rwor th  and Chebyshev des igns w i l l  depend 

upon whether r i p p l e s  i n  the  passband a re  t o l e r a b l e .  The Chebyshev 

des ign  w i l l  be b e t t e r  a t  r e j e c t i n g  f requenc ies  o u t s i d e  t h e  passband and 

so f o r  many a p p l i c a t i o n s  i t  would be t h e  b e t t e r  choice.  To min imize t h e  

d i s t o r t i o n  o f  t h e  measurement s i g n a l ,  t h e  number o f  no tch  f i l t e r s  may be 

l i m i t e d  t o  bending modes w i t h  s i g n i f i c a n t  ampl i tude.  The ou tpu t  o f  t he  

bandpass f i l t e r s  may t h e r e f o r e  be  needed t o  es t ima te  t h e  ampl i tude of 

t h e  bending modes. R ipp les  i n  t h e  passband w i l l  d i s t o r t  t h i s  ampl i tude,  

so i f  ampl i tude e s t i m a t i o n  w i l l  be used, t he  B u t t e r w o r t h  des ign  would be 

b e t t e r .  I n  t h i s  t h e s i s  the  Bu t te rwor th  des ign  was chosen f o r  t h i s  rea-  

son. 

Figures  3.6 and 3.7 show t h e  po le  p a t t e r n  i n  t h e  s-plane f o r  t h e  

B u t t e r w o r t h  and Chebyshev lowpass f i l t e r s .  There i s  no r e a l  d i f f e r e n c e  

i n  the  d i f f i c u l t y  o f  des ign ing  or  implementing e i t h e r  f i l t e r .  

Choosing t h e  f i l t e r  o rde r  i s  a t r a d e o f f  between speed and n o i s e  

r e j e c t i o n .  A l a r g e r  f i l t e r  w i l l  be  b e t t e r  a t  r e j e c t i n g  f requenc ies  o u t -  

s i d e  the  passband but w i l l  use more computer code and have g rea te r  prob-  

lems w i t h  numer ica l  s t a b i l i t y .  
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e = z/n 

n = f i l t e r  order 

oc = c u t o f f  trequency 
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Figure 3.6 Butterworth Pole Pattern 
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Figure 3.7 Chebyshev Pole Pattern 

n = f i l t e r  order 
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The bandpass filter will be twice the order of the lowpass filter 

prototype. An g f h  order bandpass filter wi 1 1  have sides that drop away 

like qfh order lowpass filters. Figure 3.8 shows the magnitude response 

for Butterworth and Chebyshev qfh and 8th order bandpass filters. For 

this thesis the gfh order Butterworth bandpass filter was selected 

because the qth order did not seem to adequately reject frequencies out- 

side the passband. 
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Figure 3.8  Bandpass Filter Comparison 
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I 
In implementing a digital filter, finite wordlengths become impor- 

tant. Rounding off the filter coefficients will change the performance 
I 

of the filter. Larger filters will, in general, require higher preci- I 

I sion coefficients. Large filters should therefore be designed by cas- 

cading smaller filters. The 8'h order digital bandpass filter can be 

broken up into two 4'h order bandpass filters which come from each pair 

I 
of complex conjugate lowpass poles. Figure 3.9 shows the effect cascad- 

ing has on an gfh order bandpass filter with double precision coeffi- I 

cients. Some of the poles of the uncascaded filter fall outside the 

I 
I 

unit circle actually making the filter slightly unstable. 
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Figure 3.9 Effect of Cascading on Filter Poles 
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I 

.078 

In addition to cascading, it is also important to use a large enough 

coefficient wordlength. Figure 3.10 shows half of the complex conjugate 
poles for a cascaded 8th order bandpass f i 1 ter with different word- 

lengths. Straight single precision is inadequate, but calculating the 

coefficients in double precision and truncating to single precision for 

implementation shows little variation from full double precision imple- 

mentation. Since single precision will mean less computer load, calcu- 

lating in double precision and truncating to single precision for 

implementation is the method picked fo r  this thesis. 
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Figure 3.10 Wordlength Effect on Filter Poles 
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3.7 Freauencv Estimation 

For each mode isolated by the bandpass filters, the frequency can be 
estimated by measuring the time between the signals zero-crossings. 

This wi 1 1  give a measurement of half the period of the bending mode. 

After each bandpass cycle, the sign of the output i s  compared to the 

sign of previous output. A change of sign will indicate that the signal 

has crossed zero. 

To determine when during the time-step the crossing occurred, the 

signal is assumed to be linear throughout a time-step. This linear 

assumption will be good i f  the time-step, A T ,  is much smaller than the 

period, T. Figure 3.11 shows the linear approximation for the zero- 

cross i ng . 

Y 

3 n 
13 
- 

Figure 3.11 Linear Approximation for Zero-Crossing Measurement 
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From Figure 3.11, the fraction of the time-step where the crossing 

occurs, At , will be 

The total time between crossings is calculated as 

T, (AT-3tprevious) + K AT + A t  
cross i ng 

(3.11) 

(3.12) 

where K is the number of time-steps in the half-period where no cross- 

ings occurred and T, will be the measured half-period. Each crossing 

will yield a new measurement of the frequency, o,, which will be 

(3.13) 

Nearby bending modes will only be partially attenuated by the band- 

pass filter. These external modes leaking into the bandpass filter's 

output will act as a driving noise in the frequency estimation. This 

noise will cause the measured frequency to oscillate about the true fre- 

quency. Smoothing of the frequency measurement was therefore added to 

filter out these perturbations while tracking the mean of the signal, 

which should correspond to the actual bending frequency. 

To smooth the signal, the frequency measurement is passed through a 
second-order system. The natural frequency and damping ratio can be 

varied to achieve a good tradeoff between noise rejection and tracking 

speed. For the Shuttle with large payloads attached to its RMS, bending 
frequencies of interest usually fall between 0.03-0.2 Hz.  A second-ord- 

er system with a natural frequency of 0.015 Hz and a damping ratio of 

0.707 was found to give good performance. 
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When the bending mode frequencies are closely spaced together or 

when the bending modes cannot be predicted very well, many bandpass fil- 

ters with narrow passbands should be used to prevent multiple bending 

modes from getting through a single bandpass f i 1 ter. A beat response 

will occur when two bending modes of similar frequency and amplitude get 

through the same bandpass filter. This beat response is shown in Figure 

3.12 along with its effect on the measured and smoothed frequency. 

Periodically, the time between zero-crossings will be quite short, lead- 

ing to spikes in the measured frequency. The smoother will try to fol- 

low these spikes causing large errors in the estimated frequency. 

A test was inserted to check whether the measured frequency is more 

than 10% different than the estimated frequency. If it is, then the 

measurement is changed to be limited to the 10% difference. This will 

eliminate large spikes and yet allow actual step changes in the frequen- 

cy to be tracked. 

A notch filter can be assigned to each estimated bending mode. This 

will distort the measurement signal more than is necessary since many 

bending modes may be too small to be of concern. Limiting the notch 

filtering to only those modes with significant amplitudes will reduce 

zing the distortion of the notched 

tudes was therefore included with the 

observation spillover while minim 

signal. Estimating the modal ampl 

frequency estimation. 

. The ampl i tude of each bending 

each bandpass filter. This output 

mode is estimated using the output of 

is oscillatory and will have the form 

A sin wt. Squaring this output will give 

( A  sin = A 2  sin2wt = A 2  - A 2  cos 2wt - - 
2 2  

(3.14) 
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Passing this through a lowpass filter will eliminate the second term 

leaving A2/2. The amplitude can then be found by multiplying by 2 and 
taking the square root. For the Shuttle, the measurement will be an 

attitude but the angular rates will be of greater concern. The ampli- 

tude of the angular rate can be estimated from the attitude as 

(3.15) 

where we is the estimated frequency. In summary, the angular rate of a 

bending mode is estimated from the attitude measurement as 

Measured Attitude * Bandpass * ( ) '  + Lowpass 

* x 2 + ( ) ' / 2  * x we = Angular Rate Estimate 

The digital bandpass filters don't necessarily need to run at the 

same rate that the measurements used for attitude control are taken. A 

longer time-step will lessen the computer load. The bandpass time-step 

should, however, be short enough to prevent aliasing, and to keep the 

linear assumption used in determining the zero-crossing time valid. 

When an oscillating signal is represented by a discrete set of 

points, the sinusoidal signal that passes through the points will not be 

unique. This is called aliasing: an example is presented in Figure 

3.13. Aliasing will occur when there are bending modes of significant 

amplitude with frequencies above the Nyquist frequency, F,, which i s  

defined as 

1 
f N  = ---- 2 A T  

(3.16) 
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For the shuttle, the significant bending modes are usually below around 

0.2 Hz. Choosing the time-step of the bandpass filters to give a 

Nyquist frequency well above 0.2 Hz will prevent any aliasing problems. 

In determining the zero-crossing time, the signal was assumed to be 

linear over a sampling period. This assumption will be good if the 

bending mode's period i s  much longer than the bandpass time-step. Again 

taking 0.2 Hz as the worst case, the smallest expected period will be 5 
seconds. A bandpass time-step much less than this will justify the lin- 
ear assumption used. 

The attitude of the Shuttle i s  measured every 0.16 seconds. The 

bandpass filters are chosen to run for only one axis at each measure- 

ment. This will make the bandpass time-step three times the measurement 

interval, as there are three axes, so AT,, = 0.48 seconds. This gives a 

Nyquist frequency of 1.04 Hz which i s  well above 0.2 Hz. The shortest 

expected important modal period is around 5 seconds which is over 10 
times the bandpass time-step. Running the bandpass filters one axis at 

a time will give a short enough time-step and the computer load of the 

frequency identification will be cut by a factor of three. 
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CHAPTER 4 

NOTCH FILTERS 

4.1 Introduction 

This chapter presents the design of the notch filters, particularly 

znd and 4th order filters. A simple model consisting of a rigid body 

plus one bending mode is used to represent a flexible spacecraft. The 

combined frequency response of this model and the notch filters is used 

to compare the different order filters and to study how errors in the 

bending frequency estimates can affect the system. Added phase lag due 

to the notch filters is seen to be of potential concern suggesting that 

the 2nd order filter may be a betteF choice than higher order designs. 

I 

4 . 2  Notch Filter Design6 

The notch f i 1 ters are designed very much 1 i ke the bandpass f i 1 ters 

in Section 3.6. An analog lowpass filter prototype is selected. The 

lowpass prototype is then transformed into a bandstop f i 1 ter which is 

converted into digital form by the use of a bilinear transform. 

The Butterworth design was chosen as the lowpass prototype because 

its smooth frequency response will minimize distortion of the signal 

outside the stopband. The pole patterns of the Butterworth lowpass pro- 

totypes for 2nd and 4th order notch filters are shown in Figure 4.1.  

Given the lowpass filter with transfer function HLP(s)  having a cut- 

off frequency wC,  an analog bandstop filter can be constructed with the 

frequency transformation, 
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H,, (s) e: --=-- 0 

s+w, 

I- . 
r\ 

for qfh order notch f i l t e r  

Figure 4.1 Butterworth Lowpass Prototype Pole Locations 



with 

wc = w2 - 0 ,  (4 -2) 

where wl and o2 are the stopband frequencies. When W, and w2 are close 

together, the stopband will be in the shape of a narrow notch. The cen- 

ter frequency of this bandstop, or notch filter, will be 

I 

Ideally, the center frequencies o f  the notch filter will be equal to the 

bending mode frequencies. The notch filter should have a stopband wide 

enough to allow for small errors in the estimated frequency but not too 
wide as to overly distort the signal. For the rest of this chapter and 

in the final design, the passband frequencies are chosen as w, = 0.9 wN 

and o2 = 1 . 1  a,. 

A bilinear transform is used to convert the analog notch filter to a 

digital form. As with the bandpass filter, the stopband frequencies are 

prewarped by 

w 1  = tan (wIT/2) 

w2 I = tan (w2T/2) 
(4 94) 

where T is the time-step of the digital notch filter. The digital 

transfer function, H,, can now be obtained by 

2-1 

2+1 
H, (2) = H,, (----I 

the transformation 

(4 5) 
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The frequency response of a Znd and qth order notch f i 1 ter is shown 
in Figure 4 .2 .  The qth order notch filter has sharper cutoffs in the 

magnitude response but has twice the phase shift of the Znd order f il- 

ter. If added phase lag is of concern, a higher order f i l ter is not 

necessarily better than a low order filter. 

To study the effect of the notch filters, a simple plant consisting 

of a rigid body plus one bending mode is used to represent a flexible 

spacecraft. This simple model is used to compare different order notch 

filters and to study how errors in estimating the bending frequencies 

may alter the performance of the system. 

A block diagram of the simple spacecraft 

4.3. Part of the rigid body control accelerat 

model is shown in F i gure 
on goes into excit ng the 

bending mode; this fraction is represented by 8 .  For this analysis, 

p O . 1  and the structural damping, {,=0.005. Figure 4.4 shows the fre- 

quency response of this system. The spike in the magnitude response is 

due to the bending mode and can lead to closed-loop instabilities. 

Figure 4.5 shows the combined frequency response of the plant and 

notch f i 1 ter. Both 2nd and qth order notch f i 1 ters el iminate the spike 
in the magnitude response. The qth order f i 1 ter, however, adds a larger 

phase shift. Figures 4.6  and 4.7 show the combined frequency response 

with the notch filter center frequency in error by 5% low and high 

respectively. 

The Znd and 4th order filters can easily remove the flexible motion 

from the signal when the bending frequency is known. When there is an 

error in the frequency estimate, the effect of tne notch filters can 

substantially change. A high estimate is of particular concern because 

the notch filters will add phase lag at the bending frequency with only 
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Figzre  4.6 Notch F i l t e r  Centered 5% Low 
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I 

I 

partial attentuation of the magnitude. This added phase lag will tend 

to destabilize the system. From the frequency plots, the 2nd order fil- 
ter would seem to be the better choice. The slightly better magnitude 

response o f  the qth order filter does not make up for the added phase 

lag introduced. 
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CHAPTER 5 

REVIEW OF SPACE SHUlTLE ATTITUDE CONTROL SYSTEM 

5.1 Introduction 1 

The spillover reduction technique described in the last two chapters 
was designed with the Space Shuttle in mind. This chapter reviews the 

Shuttle’s attitude control system to allow more detailed design and I 

analysis of the notch filters and their effect on the closed-loop sys- 

tern. The sources of flexible dynamics are also reviewed. There are 

many problems created when this flexibility interacts with the attitude 

I 

I 

I 

I 

control system. It is hoped that notch filtering of the measurement I 

signal would help alleviate some of  these problems. 

5.7 Overview of the On Orbit Attitude Control Svstwn’ - I 

A block diagram o f  the space shuttle on-orbit attitude control sys- 

sent to the phase plane control system which produces a commanded accel- 

1 

I tern is shown in Figure 5.1. Attitude and rate errors, e, and we,  are 

I 

i 
eration, uc. The control jets are fired to produce an acceleration, a, 

as close as possible to a C .  The resulting attitude of the Shuttle is 

measured by the Inertial Measurement Unit (IMU) . This measured atti- 

tude, O m ,  along with the feedforward prediction of the rate change due 

to the jet firing, hpRED, are used to produce an estimate of the angu- 

lar rate, W .  The estimated rate and measured attitude are fed back to 

form the error signal. The control system cycles every 80 ms, with I M U  
measurements every 160 ms. 

The control system operates for each axis separately. Euler coupl- 

ing between axes is usually not of concern because the angular rates are 

usually quite small. Euler coupling will appear as a small acceleration 
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I 
1 disturbance which can be estimated along with external disturbances such 

as those due to gravity gradient torques. 

The control system has two levels of operation. For larger control 

action, the Primary Reaction Control System (PRCS) is used. The PRCS I 

~ uses the primary jets to control the spacecraft. For tighter control 

about an operating point, the Vernier Reaction Control System (VRCS) is 

used. The VRCS uses the much less powerful vernier jets. The deadbands I , 

and rate limits of the phase plane, the state estimator gains, and the 

jet selection method are different for PRCS and VRCS modes of operation. 

, 
I 

I 

I 

I 

The control jets are selected to fire to produce an acceleration 

which matches as closely as possible the commanded acceleration. The I I 

control jets used for attitude control are a number of on-off thrusters I 

that are placed around the Shuttle. There are 38 primary jets which I 

force. The jet locations and the directions in which they fire are 
produce a force of 870 lbs., and 6 vernier jets which produce 24 lbs. of 

I 
shown in Figure 5.2. 

The primary and vernier jets are selected by two different methods. 

The primary jets are selected by a table look-up scheme of preselected 

jet combinations. The vernier jets are selected by a dot product algo- 

rithm. The predicted acceleration vector for each vernier jet is dotted 
with the commanded acceleration vector. The jet with the largest dot 

product will come closest to producing the commanded acceleration and so 
i s  selected to be fired. If a second jet has a dot product of greater 

than 0.5 times the first jet's dot product, then this second jet will 

also fire. Similarly, if a third jet has a dot product of greater than 

0.4 times the first jet's dot product, then it will fire too. 
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Figure 5.2 Jet Locations and Directions 
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The change in the Shut le's angular ra e that each jet will produce 

over one 80 ms cycle is predicted before each flight and loaded into the 

computer. Up to six sets of these predicted rate changes can be loaded 

for various expected inertia configurations. When a jet fires, the pre- 

dicted angular rate change is fed forward to the state estimator. This 

feedforward information improves the performance of the estimator. 

ertial -t Unit 

The Inertial Measurement Unit ( I H U )  has a stable platform that is 

kept fixed in inertial space by a set of gyroscopes. The outside of the 

IMU is fixed to the body of the Shuttle. The stable platform is iso- 

lated from the body frame by a series of gimbals. Reading the gimbal 

angles gives the orientation o f  the Shuttle with respect to an inertial 

frame of reference. 

The measured gimbal angles are used to form a quaternion that speci- 

fies the relationship between the Shuttle's body axes and the inertial 

frame. For each measurement cycle, this quaternion i s  constructed and 

compared to the previous quaternion to produce an attitude increment. 

The measured attitude used for the state estimator is the previous meas- 

ured attitude plus the latest attitude increment. 

The measurement cycle time is 160 ms, so the measurements are incor- 
porated on every other control cycle. There is a delay in the process- 

ing of the attitude measurement of 232 ms. The measured attitude will 

therefore be approximately three control cycles old when it is used. 

This delay acts as an additive, frequency dependent phase lag of around 

90 deg/Hz. 
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5.5 State Estimator 

The state estimator takes the measured attitude plus the predicted 

angular rate change due to the jet firings and produces an estimate of 

the disturbance acceleration and the vehicle angular rate. Sources of 

the disturbance acceleration will include bending motion, ignored Euler 

coupling, and external torques such as gravity gradient and aerodynamic 

torques. The disturbance acceleration estimate is fed to the rate esti- 

mator and is also used to adjust a bias switch line in the phase plane. 

The estimated angular rate is fed back to produce the rate error which 

drives the control system. 

A simple block diagram of the state estimator is shown in Figure 

5.3. The state estimator is broken up into two components, a disturb- 

ance acceleration estimator and an angular rate estimator. The two were 

separated to allow independent design so as to achieve different desired 

response characteristics. The acceleration estimator is designed to 

track slowly varying disturbances such as those due to gravity gradient 

torques. The step response of  the disturbance acceleration estimator i s  

shown in Figure 5.4. 

The rate estimator is designed to correct errors in the jet feedfor- 

ward information. Different sets of gains are therefore used when pri- 
mary and vernier jets are in operation. The primary jets produce much 

larger rate changes, so the estimator gains for primary operation were 

chosen to give a faster response. When the vernier jets are used, the 

estimator does not need to be as fast, so the gains were chosen to give 

a smaller bandwidth which will be better at rejecting noise. The fre- 

quency response of the rate estimator for both primary and vernier jets 

is shown in Figure 5.5. 

63 



7 Disturbance 
AWPRED Acceleration - > Estimator 

r 

Figure 5.3 State Estimator 

- > - 

Figure 5.4 Disturbance Acceleration Estimator Step Response 

64 



I 

0. 

-90. 

- 180. 

FREQUENCY (Hzl 

.I_ 

I I 
0.0 1 0.1 

FREQUENCY LHzl 

F i g u r e  5 . 5  Angular R a t e  E s t i m a t o r  Frequency Response  

65 



se Plane Controller 

The phase plane controller takes the attitude and rate error for 

each axis separately and produces a jet firing command for each axis. 

The jet selection logic takes these commands and determines which jets 

to turn on or off. Figure 5.6 shows typical phase plane trajectories 

for the different jet firing commands. The phase plane controller is 

shown in Figure 5.7. The phase plane deadband and rate limit have a big 

effect on the performance of the system. Tight deadbands and rate lim- 

its will give better tracking about the operating point but will lead to 

increased jet firings and may also destabilize the system. A typical 

trajectory i s  shown in Figure 5.8 where a large initial error is brought 

into a stable limit cycle about the operating point. 

The flexibility of concern are those bending modes that are sensed 

by the I M U  but are only partially attenuated by the state estimator. 

These bending modes wi 1 1  have frequencies below around 0.2 Hz. The 

flexibility of the orbiter itself will have bending frequencies well 

above this. Payloads attached to the Shuttle by flexible connections 

can, however, often lead to low frequency vibrations. 

Payloads pivoted out of the Shuttle bay on a tilt table can produce 

this type of low frequency motion. Examples of such payloads include 

the Inertial Upper Stage and Centaur with spacecraft. These pivoted 

payloads can be characterized as having one dominant bending mode. Such 

payloads can be as heavy as 65,000 lbs. which is over a quarter of the 

orbiter’s 226,000 lbs. A great deal of analytic and simulation 

a n a l y ~ i s ~ * ~  has been done for pivoted payloads. This analysis has shown 

that unwanted jet firings, undesirable excitation of the payload, and 

even closed-loop instability can result from the low frequency payload- 

orbiter dynamic interaction. 
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Figure 5.8 Typical Tra jectory  f o r  Stable Limit Cycle 
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Payloads attached to the Shuttle's Remote Manipulator System (RMS) 

are another source of low frequency bending motion. This type of pay- 

load-orbiter connection can be particularly troublesome because it may 

involve many bending modes which may be hard to predict and that will 

tend to vary with time as the RMS changes in configuration. Figure 5.11 
shows roughly how the fundamental bending frequency tends to vary with 

height above orbiter for different payload masses. 

. . .  s Caused Bv Flexibilitv 

I The bending modes that can cause problems are those that are sensed 

by the I M U  but are not filtered out by the state estimator. These modes 
are only partially attenuated by the rate estimator and will be shifted 
in phase by the delay in the I M U  and from the phase lag introduced by 

the estimator. With tight rate limits, the bending motion that gets 

through may be large enough to cause jet firings. The added phase lag 

may cause the jets to fire at the wrong time, further exciting rather 

than controlling the flexible motion. 

1 

This destabilizing jet firing will lead to forced limit cycling, 

which is undesirable for many reasons including excessive motion of the 

orbiter, wasted fuel, and large excitation of the payload. To avoid 

this unstable jet firing, various payload positions and orientations are 

carefully analyzed with computer simulations with different deadbands 

and rate limits before each flight . These simulations take a lot of 

time and money. The range of stable RMS configurations is often found 

to be very limited for large payloads. 

By adding notch filters, it is hoped that the potentially destabi- 

1 izing bending modes can be removed from the feedback signal. In some 

cases the forced limit cycling may be prevented from starting, or once 

started, the frequency estimator can lock onto the unstable mode and 

stop the jets from firing. 
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CHAPTER 6 

ANALYTIC ANALYSIS OF CLOSED-LOOP SYSTEtl 

In this chapter a simplified s-plane model of the Shuttle's dynamics 

and control system along with a describing function approximation of the 

nonlinear phase plane controller are used to analyze the effect differ- 

ent notch filters will have on the closed-loop system. Replacing the 

nonlinear phase plane with a describing function allows for closed-loop 

limit cyle prediction. The ability of the different notch filters to 

prevent limit cycles is studied to select a filter design. 

In addition to choosing the order of the filters, the describing 

function analysis is also used to determine the best location for plac- 

ing the notch filters. How errors in the bending frequency estimate 

will affect the closed-loop system is also investigated. The results of 

this analysis will help in deciding when the notch filter coefficients 

should be changed. 

6.2 Sinusoidal InDut Describina Functionio . .  

Describing functions are used to approximate the output of nonline- 

arities for a given input form. The sinusoidal input describing func- 

tion is calculated based on the assumption that the input to the 

nonlinearity is a single sinusoid. The describing function i s  a quasil- 

inear approximation; it is not strictly linear since it is generally a 

function of the input amplitude and sometimes of the input frequency. 
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I 
The describing function, N(A,w), is chosen to minimize the integral 

of the squared error between the actual output of the nonlinearity and 

the describing function output over one period, Figure 6.1. 

x(t) = A sin wt 
\ 
6 " 

I 

Describing Function ,, I 

Y (t) 
Nonl i near i ty 

r 

choose N(A,w) to min Ce(t)I2 dt 
r 

Figure 6.1 Describing Function Approximation 

The output of a symmetric nonlinearity can be expanded in a Fourier 

series as 

a 

y (t) n-1 X (A,, sin nJI + B, cos nJI) (6.1) 

where JI = ut. The approximate output component at the input frequency 

that minimizes the integral squared error will simply be the first terms 

of the series, 

y(t) = A ,  sin JI + B, cos JI (6 -2) 

where 



The input signal has the form 

x(t) = A sin JI 

;(t) = Aw cos JI 

Equation 6.2 can be rewritten as 

Bl - A 
y(t) = A -1 x (t)  + --- A W  x(t) 

Replacing the time derivative by the Laplace transform variable s, 

A, B s 
y(t) = (-- + -1-) x (t) 

A Aw 

But since the input is sinusoidal, s .+ j w  and Eq. 6.7 becomes 

(6.5) 

(6.61 

(6.7) 

(6.8) 

The describing function i s  often broken up into two components, the in- 

phase and quadrature gains, 

np(A,w) = -- Ai  = - /'e(t) sin JI dJI 

nq(A,w) = -- B 1  = - ?;(t) cos JI dJI 

A a A  O 

A nA O 

(6.10) 
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For a closed-loop system with a nonlinearity as shown in Figure 6.2, I 

describing functions can be used to predict limit cycles. 

Figure 6.2 Describing Function in Closed-Loop System 

76 



The closed-loop system shown in Figure 6.2 is similar to the linear 

system in Figure 6.3. 

Figure 6.3 Linear Closed-Loop System 

The linear system will have a closed-loop transfer function of 

Poles of the closed-loop system will lie on the imaginary axis if 

or 
1 + K G ( j w )  = 0 

G ( j w )  - - 1 / K  

(6.11) 

(6.12) 

(6.13) 

Equation 6.11 can be solved numerically to find the appropriate gain K ,  

or K can be found graphically by plotting G ( j w )  for various frequencies 

o, and plotting - 1 / K  for various gains K. If these plots intersect, 

then there will be a gain that will place closed-loop poles on the imag- 

inary axis. The particular gain that will do this is the value o f  K at 
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the intersection. Figure 6.4 shows an example of  this graphical tech- 

nique with polar and gain-phase plots. 

With the describing function, a limit cycle will be predicted if a 

solution can be found to 

1 + N(A,o)G(jw) = 0 (6.14) 
or 

G ( j w )  = -I/N (A,W) (6.15) 

And as in the linear system, the above condition can be tested graph- 

ical ly. An intersection of the G ( j w )  and - 1 / N ( A , w )  plots wi 1 1  indicate 

a limit cycle. For most common nonlinearities, the describing function 

will not depend upon the input frequency, but just upon the input ampli- 

tude. This is true for the nonlinearity studied in this chapter, so 

N(A,w)=N(A). Figure 6.5 shows this graphical technique on polar and 

gain-phase plots. 

I n  addition to predicting the presence o f  a limit cycle, the plots 

can also be used to predict the limit cycle amplitude, frequency, and 

stability. Figure 6.6 shows how this is accomplished by marking various 
amplitudes on the -1/N(A) curve, and marking various frequencies on the 

G ( j w )  curve. 

To determine the stability of the limit cycle, the amplitude is per- 

turbed slightly higher and lower than the limit cycle amplitude. If the 

higher amplitude tends to increase further, then the limit cycle will be 

unstable: if it tends to decrease, then the limit cycle will be stable. 

Figure 6.7 show this stability determination on a polar plot. 

It should be noted than since the describing function is only an 

approximation to the nonlinearity, the presence or absence of a limit 

cycle can only be predicted by this graphical method. To check whether 
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a limit cycle really exists, the actual nonlinearity must be used in a 

simulation. 

I 

The accuracy of the describing function in modelling a nonlinearity 

can be evaluated by looking at what is ignored. From Equations 6.1 and 

6.2 it can be seen that the error in the approximation will simply be 

the higher order terms of the Fourier series. 

a 
e(t) = 1 (An  sin n$ + B, cos n4) (6.16) 

n=2 

For the closed-loop system, the single sinusoidal input assumption will 

be good i f  the higher order terms are filtered out by the linear system, 

G ( s ) .  For the Space Shuttle, the sharp cutoff of the rate estimator 

will filter higher harmonics making the use of the describing function 

approximation a good way of  checking for limit cycles. 

8.3 Describina Function Representation of  P k e  P l a n e  

For most payload-orbiter interaction cases, flexural motion will 

cause the rate limits to be exceeded before the deadbands. The forced 

limit cycling that can occur will therefore generally involve rate limit 

firings. The describing function representation of the phase plane will 

be for rate limit firings only. The bias switch line i s  also ig ored 

for this analysis. 

With these simplifications, the phase plane will act like a pos 
hysteresis loop, Figure 6.8. 

tive 

83 



Y 

1 

C -RL 

, - 1  
\ - -  

D 

B A 
___e__ 



The sinusoidal input describing function for this will be 

L --- [ ( A  + JFi - jl for A>I 
=A2 

2 --- [ ( A  + JFi - jl for A>I 

for A 4  
(6.17) N ( A )  = 

. .  

N ( A )  = I 0 
(6.17) 

for A 4  

A plot o f  - 1 / N ( A )  is shown on a gain-phase plot in Figure 6.9. 

6.4 SimDlified ReDresentation of Shuttle 

A simplified s-plane representation of the Shuttle's dynamics and 

control system has been developed' to be used for limit cycle predic- 

tion. The effect of  adding various notch filters in different locations 

in the control system can be studied with this simplified system. This 

analysis of the closed-loop system will help in designing the notch 

filters that will best prevent forced limit cycling from occurring. 

The Shuttle-payload dynamics are modelled as a rigid body plus one 

bending mode. This representation will be particularly good for the 

pivoted payloads, but will also give some intuitive insights for more 

complicated structures. Figure 6.10 shows this simplified model. The 

variable, P ,  can be thought of as a weighting of the control spillover. 
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Figure 6.10 Simplified Hodel of Shuttle Dynamics 

6.4.2 Ine rt ial Measurement Uni t  

The I M U  is modelled as giving delayed, noise-free measurements. The 

s-plane model will therefore be 

1 -sT/2 e-ST ------ 
I + S T Y ~  

(6.18) 

where T is the time delay. This first order Pade approximation of the 

delay was used to keep the model analytic. Both the delay and the 

approximation have unity magnitude response and will introduce a phase 

lag. Figure 6.11 shows that for the range of frequencies of interest, 

the approximation is very good. 
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8.4.3 S t a t e  Es t ima to r  

A second-order t r a n s f e r  f u n c t i o n  i s  used t o  represent  the r a t e  f i l -  

t e r .  The j e t  feedforward in fo rmat ion  i s  assumed t o  be accura te  w i t h  

respec t  t o  r i g i d  body motion, so t h e  i n p u t  t o  the  es t ima to r  w i l l  be the  

measured a t t i t u d e  minus the r i g i d  body a t t i t u d e ,  F igu re  6.12. 

v e r n i e r  j e t s  

[,=0.5 
we=O .2513 

F i g u r e  6.12 S i m p l i f i e d  S t a t e  Es t imator  

The frequency response o f  t h i s  s i m p l i f i e d  model o f  t he  es t ima to r  i s  

shown i n  F i g u r e  6.13 .  Comparing t h i s  t o  F igu re  5.5 shows t h a t  t he  sim- 

p l i f i e d  model i s  a good approximat ion t o  t h e  v e r n i e r  r a t e  f i l t e r .  
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Figure 6.14 shows the combined system model. Two possible locations 

for the notch filters would be after the measurement and after the rate 

estimator. These two locations will give a different response because 

of the jet feedforward information. 

RL - r a t e  limit 
H ( A )  - descr ib ing f u n c t i o n  r e p r e s e n t a t i o n  of phase plane 
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Figure 6.15 shows stability plots for different amounts of control 

spillover. Larger p leads to intersections of the G(jo) and - 1 / N ( A )  

curves which will indicate a limit cycle. For the Shuttle, a limit 

cycle will mean jet sustained oscillations. 

Figure 6.16 shows how a notch filter added to the linear system can 

affect the stability. Figure 6.17 shows a case where the 2"d order fil- 
ter prevents a limit cycle but the 4th order does not. When the notch 

filter center frequency is in error, this phase lag can be destabiliz- 

ing, therefore only 2"d order filters are considered. 

This graphical technique for finding limit cycles can be used to 

form a stability boundary. A t  a given bending frequency, p is varied 

until the G ( j w )  and - 1 / N ( A )  curves intersect. A higher p will give 

limit cycles, lower p will be stable. This analysis is carried out for 

a number of bending frequencies to create a stability boundary as shown 

in Figure 6.18. Figure 6.19 shows the stability boundary with a notch 

filter added after the measurement and after the state estimator. Both 

notch filters should dramatically reduce limit cycling, but the notch 

filter placed after the measurement is seen to give the best perform- 

ance. 

Errors in the notch filter center frequency will reduce the effec- 

tiveness of the filters. Figure 6.20 shows how the stability boundary 

changes when the frequency estimate is in error by 5% low and high. A 

high center frequency is seen to lead to greatly reduced stability. 

This occurs because a phase lag is introduced at the bending frequency 

with only partial attenuation. 
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I 

The stability analysis in the last section indicates that second- 

order notch f i lters placed after the measurements wi 1 1  give the best 

performance. This will also give a choice between the measured attitude 

and the notch filtered attitude for the feedback signal. Deadband fir- 

ings may occur with large amplitude bending motion usually involving 

low-frequency payload-orbiter interactions. In such cases, feeding the 
filtered attitude back may prevent instabilities. 

Deciding when to change the notch f i 1 ter coefficients has not yet 

been addressed. Changing the coefficients on every cycle is unnecessary 

and is probably undesirable. The frequency response of the notch fil- 

ters is for steady-state. Constantly changing the coefficients will 
give a complicated filter response. The coeffients should only be 

changed when the frequency estimate differs from the center frequency by 

a significant amount. The analysis in the last section showed that hav- 

ing a notch center frequency above the bending frequency should be 

avoided. The filter coefficients should therefore be changed sooner 

when the frequency estimate goes below the notch center frequency than 

when it goes above. For this thesis, the notch filters have bandstop 

frequencies 10% above and below the center frequency. The filter coef- 

ficients are changed when the estimate goes 2% lower than the center 

frequency and 5% higher. 
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CHAPTER 7 

SIMULATION RESULTS 

A computer simulation o f  the Space Shuttle with payloads attached to ’ 

its robot arm is used to evaluate the effectiveness of the notch filters ’ 

in reducing instability. The payload-orbiter dynamics are highly 

dependent upon the arm configuration. A particular payload will have 

stable and unstable regions in which it can operate. The objective of , 

adding notch filters is to expand the stable operating range of payloads 

attached to the Shuttle’s flexible arm. The notch filtering scheme is I 

therefore evaluated by how well it expands the safe operating volume for I 

different size payloads. I 

I 

I 

I 

7.3 C w u t e r  Simulation I 
I 

The computer simulation used is called L S A D  (Less Singing And Danc- 

ing). LSAD was developed at Draper” for engineering analysis involving 

the Shuttle with payloads attached to its RflS. LSAD has a simplified, 

linearized model of the arm dynamics along with a model of the Shuttle 

and its control system. 

I 
I 

l 

I 

1 
1 

LSAD was used for testing the notch f i 1 ter ing scheme because it has 
been demonstrated to provide representative payload-orbiter dynamics and 

is much cheaper to run than the high fidelity simulations that incorpo- I 

1 

, 
rate many second order effects. I 



To test the stability of a particular payload-orbiter configuration, 

LSAD calculates the dominant bending mode and fires a jet couple to 

excite this mode. If the resulting oscillation decays toward zero while 
in a closed-loop attitude control mode, then the system is stable. 

An array of different payload locations can be tested to determine 

the stable and unstable operating regions. Figure 7.1 shows the simu- 

lation results for stable and unstable cases using the Space Telescope 

as a typical payload. The plots are of body rates and rate estimates 

along with the vernier jet firings. 

Two large payloads, the Space Telescope and the generic 65,000 10. 
payload, were used for the simulation analysis. The Space Telescope 

weighs around 25,000 lbs. and is a typical example of the larger pay- 

loads that the Shuttle deploys. The 65,000 lb. payload is the largest 

possible payload the Shuttle will deploy and therefore will present a 

worst case example in terms of low frequency payload-orbiter dynamic 

interaction. 

An array of points in the plane above the Shuttle were tested for 
stability with and without notch filters. These points are plotted in 

the vehicle's structural frame of reference which is shown in Figure 

7.2. Figures 7.3 and 7.4 show the simulation results for the two pay- 
loads. The addition of the notch filters is seen to dramatically 

increase the stable operating region. 

Figures 7.5 and 7.6 show what the stable 1 

1 ike at x=700 and x=900 inches f o r  the Space Te 

mits of operat 

escope. These 

on look 

figures 
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h 
VI 

UNSTABLE (wi thout notch f i 1 ters) .. 

x =700 y = 0 z =600 

.I 

STABLE (with notch f i 1 ters) 

Figure 7.1 LSAD Stability Simulation f o r  Space Telescope 
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0' 

I 

Figure 7.2 Structural Frame of Reference 
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show the difference adding notch filters can make in the stable handling 

of large payloads. , 

Figure 7.1 shows one typical case where adding notch filters pre- 

vents unstable jet firings from occurring. Figure 7.7 shows another 

typical case where the system with notch filters initially experiences 

unstable jet firings until the frequency estimator locks on to the bend- 

ing modes and the notch f i 1 ters center frequencies become close enough 

to the bending frequencies to stop further unstable firings. For this 

I 

1 
, 

i 

example, stability was regained after about seven low-frequency bending I 
I 

cyc 1 es . 
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i I -1 - 

I 

(wi thout notch f i 1 ters) 

x =700 y = O  z =900 

( w i  t h  no tch  f i 1 t e r S )  

Figure 7.7 Typical Simulation Run for Space Telescope 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

The combination of frequency identification and notch filters can 

help reduce instabilities caused by flexible body dynamics spilling over 

into the rigid body control system. The algorithm used is relatively 

simple and easy.to implement on a digital computer. Simulation results 

for two large payloads attached to the Shuttle’s robot arm show a large 

increase in the range of stable operation when notch filters are added. 

The frequency identification uses bandpass filters to isolate each 

bending mode. Engineering judgment must be used in determining the num- 

ber of filters and their passband frequencies for a given payload. The 

identification method will work well when reasonable a priori knowledge 

equencies is available or when use of many, narrow 

is acceptable. 

of the bending f 

bandpass f i 1 ters 

The system m 

quenci es to vary 

would place less 

ght be made more adaptable by using the estimated fre- 

the bandpass cutoffs. Allowing the passbands to vary 

importance on the initial cutoff frequencies, and thus 

would make the system more autonomous. Perhaps one set of initial con- 

ditions could be used for any payload which would remove the necessity 

for preflight, payload specific analysis. 

The ability of the system to identify and notch filter bending fre- 

quencies requires that the low-frequency flexibility consists of a few 

distinct, dominant modes. The Shuttle-payload dynamic interaction can 

generally be characterized by a few distinct modes. For many flexible 

spacecraft, this may not be the case. The bending modes may be very 

closely spaced together. The notch filtering scheme method for stabi- 

lizing flexible systems will not work well for spacecraft with tightly- 

packed modes, requiring investigation of alternate filtering methods for 

these appl ications. 
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The frequency identification - notch filtering method reduces insta- 
bility by filtering out the bending dynamics component of the measure- 

ment signal. The bending modes are left to damp themselves out. A more 

sophisticated technique might use the identified bending mode frequen- 

cies in conjunction with an active flexible body control system. 

The use of notch filters to reduce observation spillover has been 

shown to be effective in simulations of the Space Shuttle with large 

payloads attached to its robot arm. Further work could be done, partic- 

ularly on the frequency' identification, to improve performance and to 

make the system more autonomous. The notch f i 1 ter ing scheme shows a 

potential for greatly expanding the range of stable payload operation. 

It might also be useful for other flexible spacecraft. 

I 

111 



1. Strunce,R.R., Lin,Y.H., "State-of-the-Art in Vibration Control Tech- 

niques for Large Space Structures", Draper Report P-885. 

2. Balas,M.J., "Feedback Control of Flexible Systems", 

Auto. Cont,, vol.AC-23, pp. 673-679, 1978. 

3. Greene,C.S.,. Cunningham,T.B., "Integrated Controls/Structures Study 

o f  Advanced Space Systems", 1981 Large Space System Technology, 

Third Annual Technical Review. N82-18275. 

4. Longman,R.W., "Annihilation or Suppression of Control and Observa- 

tion Spillover in the Optimal Shape Control of Flexible Spacecraft", 

Jhe Journal o f  Astronautical Sciences, vo1.27, No 4, Oct-Dec. 1979, 

pp. 381-399. 

5. Macala,G.A., "Tuned Feedback Damping with Applicat on to the Galileo 

Spacecraft", Paper 81-200, AAS/AIAA Astrodynamics Specialist Confer- 

ence, Lake Tahoe, Nevada, Aug. 3-5, 1981. 

ianal Analvs _i5L, Hayden Book Co., Rochelle Park, 6. Stearns,S., Diaital S . .  
N J ,  1975. 

7. "Simplified Model of the Space Shuttle On-Orbit Flight Control S y  

stem", July 1982, Draper Report CSDL-R-1562. 

8. Penchuk,A., Hattis,P., Kubiak,E., "A Frequency Domain Stability 

Analysis of a Phase Plane Control System", J o u r n a l n c e .  Con- 

lrol. and Dynamics, Vol. 8, No. 1, Jan.-Feb. 1985, pp. 50-55. 

112 



9. Kirchwey,C., Sackett,L., "Stability of the Shuttle On-Orbit Flight 

Control System for a Class of Flexible Payloads", P- 
Control Conf,, Aug. 1983, pp. 128-141. 

. .  10. Gelb,A., Vander Velde,W., flultirile - frlpuf Descrlblna Functions a M  

Nonlinear System Design, McGraw-Hill Book Company, New York, 1968. 

11 .  Barrows,T., "A Simplified Simulation for the Analysis of RMS Motion 

with Heavy Payloads", July 29, 1984, Draper Memo TMB-84-2. 

113 



A P P E N D I X :  HAL CODE 
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H A L / S  SlO 3 6 0 - 2 4 . 2 0  

SRN S l M T  

O O O l 0 0  1058 M I  F I L T E R :  

O O O l 0 0  1058 M I  PROCEDURE: 

OOOl00 1059 MI 

000700 1059 M I  

000700 1059 M J  

001OOO 1060 M I  

001000 1060 M I  

001ooO 1060 M I  

001000 1060 M I  

001500 106i M I  
001500 1 0 6 1  M I  

M)1800 1062 M I  
001800 1062 M I  
001900 1063 M I  

001900 1063 M I  

002OOO 1 0 6 4  M I  
00ZOOO 1 0 6 4  M I  
002100 1065 M I  

002800 1069 :I 

002800 1 0 7 0  M I  

003000 1071 M I  1 

003800 1077 1 

003900 1 0 7 8  M I  I 

0 0 4 1 0 0  1079 M I  1 

004200 1080 111 i 

E 

E 

E 
0 0 4 3 0 0  1 0 8 1  M I  1 

0 0 4 5 0 0  1082 :I 1 

E 
0 0 4 6 0 0  1083 111 1 

0 0 4 7 0 0  1 0 8 4  M I  1 

004800 1085 :I 1 

E 

005000 1 0 8 7  :( t 

0051M) 1088 :I 1 

I N T E R M E T R I C S .  I N C  

SOURCE 

MARCH 4. 1986 1 1 : 2 8 : 4 1 . 6 0  PAGE 9 4  

CURRENT SCOPE 

I F I L T E R  

I F I L T E R  

DECLARE A R R A Y ( 3 .  3. 2)  SCALAR I N I T I A L ( 0 ) .  I F I L T E R  

I F I L T E R  

I F I L T E R  

I F I L T E R  

Y-OLD. 1-MEAS. OMEGA-MEAS. OMEGA-EST. U-EST-(. U-EST-2. Y-EST-1. Y-EST-?. F-EST-1. I F I L T E R  

F-EST-2. G-EST. OMEGA-N. OMEGA-BP-1. OMEGA-BP-2. OMEGA-NIT-EST. ZETA-EST. NOTCH-WIOTH I F I L T E R  

, OMEGA-INIT.  Y-A. Y-A-1. Y-1-2. Y-1-3. U-A. U-A-1. U-A-2. U-A-3: I F I L T E R  

OEGLARE M b T R I X ( 3 .  3 )  I N I l I A L ( 0 ) .  I F I L T E R  

I F I L T E R  

DECLARE I N T E G E R  I N I T I A L ( 0 ) .  I F I L T E R  

I F I L T E R  

DECLARE SCALAR, I F I L T E R  

I F I L T E R  

DECLARE ARRAY(3.  3) BOOLEAN. I F I L T E R  

SWITCH-N I N I T X A L ( O N 1 :  I F I L T E R  

I F I L T E R  

I F I L T E R  

U-BP. u-Bp-1. u-8p-2. u-BP-3. U-Bp-4. Y-BP. Y-BP-1. Y-BP-2. Y-BP-3. Y-BP-4. F-BP-1. 

F-BP-2. F-BP-3. F-BP-4. 0-BP: 

D E C L A R E  M A T R I X ( 3 .  3) I N I T I A L ( 0 ) .  

U-N. U-N-1. U-N-2. Y-N. Y-N-1. Y-N-1. F-N - -  1. F N - - - _ _ _ -  '2. G N 0. G N 1 ,  G N 2: 

A X I S .  FREO. B P .  COUNTER. X A X I S .  N A X I S :  

GAMMA-BP. FRAC. ANGLE-EP. TIME-STEP. OMEGA-A. F-A-1. F-A-2. F-A-3. G-A. Y-RATE: 

DECLARE B O O L E A N  I N I T I A L ( 0 N ) .  F I R S T :  

I F  F I R S T  - O N  T H E N  

DO: 

R E A O ( 4 )  N A X I S .  [NFREO]:  

READ( 4 OMEGA-BP-1: 

R E A O ( 4 )  OMEGA-BP-2: 

GAMMA-BP * 0 . 8 :  . 
OMEGA-BP-1 = OMEGA-BP-1 2 3 . 1 4 1 6 :  . 
OMEGA-BP-2 = OMEGA-BP-2 2 3 . 1 4 1 6 :  

R E A O ( 4 )  NOTCH-WIDTH: 

OMEGA-INIT - (OMEGA-BP-1 4 OMEGA-BP-2) 1 2 :  

* * 
OMEGA-N . O M E G A - I N I T :  

OMEGA-YEAS * OMEG&-INIT:  

JMiGI-iST . i J M E G A - I N i 1 :  ' 

u-EST-I  * OMEGA-INIT:  

t I 

U-EST-? * OMEGA-INIT:  

I F I L T E R  

I F I L T E R  

I F I L T E R  

I F I L T E R  

I F I L T E R  

I F I L T E R  

I F I L T E R  

I F I L T E R  

I F I L T E R  

I F f L T E R  

I F I L T E R  

I 
I F I L T E R  

I F I L T E R  

I F I L T E R  
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E 
005300 1090 M I  1 

E 
005500 1091 M I  1 

005600 1092 :I 1 

005700 1093 :I 1 

005710 1094 M I  1 

005900 1095 M I  1 

005920 1096 M I  1 

006100 1097 M 2 
51 

006300 1098 M I  3 

007Ooo 1100 MI 3 

007200 1101 M I  4 

007200 1102 M I  4 

007300 1103 MI 4 

007300 1103 MI 4 

007500 1104 M I  4 

007600 1105 M I  3 

007800 1106 M I  3 

007900 1107 MI 3 

008100 1108 MI 2 

008200 1109 M I  1 

Jll. a , r . ,  

008210 1110 Y j  1 

E 
008400 1 1 1 1  M I  1 

008600 1112 M I  

* 
Y-EST-1 - O M E G A - I N I T :  

* L 

V-EST-2 * OMEGA-INIT:  

R E A O ( 4 )  OMEGA-NIT-EST: 

OMEGA-NAT-EST . OMEGA-NAT-EST 2 3.1416: 

t 

R E A O ( 4 )  ZETA-EST: 

R E A O ( 4 )  OMEGA-A: 

X A X I S  1: 

DO FOR A X I S  1 TO N A X I S :  

00 FOR FREO = 1 TO NFREO : 
A X I S  

T I Y E - S T E P  - 0.16 N A X I S :  

DO FOR B P  = 1 TO 2: 

I F  B P  1 T H E N  

ANGLE-BP * 22.5; 

E L S E  

ANGLE-BP - 67.5: 
C A L L  BANOPASS: 

END; 

C A L L  NOTCH: 

C A L L  FREO-EST: 

END: 

END: 

C A L L  LDWPASS: 

F I R S T  * O F F :  

END: 

I F I L T E R  

I F I L T E R  

I F I L T E R  

I F I L T E R  

I F I L T E R  

I F I L T E R  

I F I L T E R  

I F I L T E R  

( 

I 
I F I L T E R  

1 

I F I L T E R  I 
I F I L T E R  

I F I L T E R  

I F I L T E R  

I F I L T E R  

I F I L T E R  

1 F I L T E R  

I F I L T E R  

I F I L T E R  

1 F I L T E R  I 

I F I L T E R  

, 

I 

I F I L T E R  

I F I L T E R  

I F I L T E R  

F I L T E R  
F I L T E R  I F I L T E R  

009110 1113 M I  A X I S  = X A X I S :  I F I L T E R  

009310 1 1 1 4  M I  I F  X A X I S  N A X I S  THEN I F I L T E R  

009310 1115 MI X A X I S  = 1: I F I L T E R  

009320 1116 M I  E L S E  I F I L T E R  

009320 1116 MI X A X I S  9 XAXXS + 1: 

009400 1117 Y DO FOR FREO = 1 T O  NFREO : 
S I  A X I S  

I F I L T E R  

I 
I 009600 1118 M 1 U-BP = MEASUREO-ATTITUDE : 

S I  A X I S . F R E O . l  A X I S  

OloooO C (  BANDPASS F I L T E R S :  I F I L T E R  

010200 1119 MI 1 D O  FOR B P  = 1 T O  2: I F I L T E R  

010400 1120 Y 2 Y-BP = F-BP-1 V-BP-1 + F-8P-2 V-BP-2Ax15. I F I L T E R  

AXIS.FREO.BP ’ I ‘ILTER 

S I  A X I S . F R E O . B P  A X I S . F R E O . B P  A X I S . F R E O . B P  A X I S . F R E O . B P  

+ F-BP-3 v-BP-3 + F-BP-4 Y-BP-4 
A X I S . F R E O . B P  FREO.BP A X I S . F R E O . B P  A X I S . F R E O . B P  

011Ooo 1121 Y 2 
S I  

(3-6 P (U-BP - 2 U-BP-2 + u-BP-4 1: 
A X I S . F R E O . B P  A X I S . F R E O . B P  AX1S.FREO.BP AXIS.FREO.BP 

u-BP-4 
A X I S . F R E O . B P  

U-BP-3 
A X I S . F R E O . B P  

011100 1 1 2 2  Y 2 U-BP-3 * u-BP-2 

011200 1123 Y 2 u-BP-2 . u-BP-1 

S I  A X I S . F R E O . B P  A X I S . F R E O . 8 P  

S I  A X I S . F R E O . B P  A X I S . F R E O . B P  

u-BP-1 * U-BP 
A X I S . F R E O . B P  AXIS.FREO.BP 

I 
I 
I 
I 
I 
I 011400 1125 M 2 V-BP-4 = Y-BP-3 

S I  A X I S . F R E O . B P  A X I S . F R E 0 . B F  
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011500 1 1 2 6  M 2 Y-BP-3 * V-BP-2 

0 1 1 6 0 0  1127 M 2 V-BP-2 - V-BP-1 

011700 1128 Y 2 v-BP-1 * V-BP 

011900 1129 M 2 U-B P * Y-BP 

0 1 2 1 0 0  1 1 3 0  M I  1 END: 

S I  A X I 5 . F R E O . B P  AX1S.FREO.EP 

S I  A X I S . F R E O . B P  A X I S .  FREO.BP 

SI A X I S . F R E O . B P  AXIS.FREO.BP 

S I  A X l S . F R E 0 . 2  A X I S . F R E O . l  

0 1 2 1 0 8  C l  CHECK A M P L I T U O E  O F  BANOPASS OUTPUT 

0 1 2 1 2 4  1132 M 1 
S I  

0 1 2 1 4 4  1135 M 1 
S I  

51 

S I  

S I  

0 1 2 1 4 8  1 1 3 6  M 1 

0 1 2 1 5 6  1138 M 1 

0 1 2 1 6 0  1139 M 1 

0 1 2 1 6 8  1 1 4 0  M I  1 

012172 1 1 4 2  M i  1 

_.... - 
012172 1 1 4 2  M I  1 

0 1 2 2 0 0  1145 M I  2 

012210 1 1 4 6  M I  1 

I 
I 
I FILTER 

I 
I F I L T E R  

I F I L T E R  

2 . 2 (V-BP 1: F I L T E R  U-A 

V-A 

A X I S . F R E 0  A X I S . F R E 0 . 2  

I 
I 
I 
I 
I 
I 
I 
I 
I 

- F-A-1 V-A-1 4 F-A-2 V-A-2 4 F-A-3 V-A-3 + G-A (U-A . A X I S . F R E 0  A X I S . F R f 0  A X I S .  FREO A X I S . F R E 0  

4 3 U-A-1 4 3 U-A-2 4 U-1-3 ): 
A X X S . F R E 0  A X I S . F R E 0  A X I S . F R E 0  A X I S .  FREO 

Y-A-3 = Y-A-2 
A X I S .  FREO A X I S ,  FREO 

V-A-2 = Y-A-1 
A X I S .  FREO A X I S . F R E 0  

Y-A- 1 - Y-A 

u-A-3 - U-A-2 

A X X S . F R E 0  AXXS.FRE0 

A X I S . F R E 0  A X I S . F R E 0  

U-A-2 = U-A-1 
A X X S . F R E 0  A X I S .  FREO 

U-A- 1 = U-A 
A X I S . F R E 0  A X I S . F R f 0  

Y-RATE . SORT(ABS(V-A + . 0 0 0 0 0 1 ) )  OMEGA-N 
A X I S .  FREO A X I S . F R E 0  

I F  V-RATE < (RL-PEOUEST / 3 )  THEN I F I L T E R  

SW 1 TCH-N 9 OFF: , I F I L T E R  
A X I S , F R E O :  

E L S E  I F I L T E R  

0 0 :  

IF Y-RATE < (RL-REOUEST / 2) AND SWI~CH-N = O F F  1 H E N  
A X I S . F R E 0 :  

S W I  TCH-N 
A X I S . F R E 0 :  

E L S E  

SWITCH-N 
A X I S . F R E 0 :  

END; 

0 1 2 3 0 0  C I  MEASURE FREOUENCV FROM C R O S S I N G  

0 1 2 5 0 0  1 1 4 8  M I  1 

0 1 2 9 0 0  $151 M I  2 
51 

013000 1 1 5 2  M )  2 

013490 1156 M 2 .I 

= OFF:  

- ON: 

T I M E S :  

I F  S I C N ( V - B P  NOT = SIGN(V-OL0 1 T H E N  
A X I S . F R E 0 . 2  A X I S . F R E 0  

0 0 ;  

FRAC TIME-STEP V-OLD / (V-OLO - Y-BP 1: 
A X I S . F R E 0  A X l S . F R E 0  A X I S . F R E 0 . 2  

1-MEA5 = 1-YEAS + FRAC: 

OMEGA-YEAS - 3.1416 / 1-YEAS 

A X I S ,  FREO A X I S . F R E 0  

A X I S . F R E 0  A X I S . F R E 0  

I F  COUNTER < 300 THEN 

OMEGA-YEAS OMEGA-INIT 
A X 1  5 .  FREO A X I S . F R E 0  

l - M E A S  = TIME-STEP - F R A C :  
I " .?  ,"rn 

I F l L T E R  

F I L T E R  

F I L T E R  

I 
I 
I 
I F I L T E R  

F I L T E R  

I F I L T E R  

I F I L T E R  

I 

I 
I 
I 

I 

I F I L T E R  

I F I L T E R  

1 F I L T E R  
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013100 1158 M 2 
SI 

013100 1158 M 2 
S I  

(1 .0 + 0 . 1  SIGN(OMEGA-MEAS 
A X I S .  F R f  0 

= OMEGA-EST 
A X I S . F R E 0  A X I S . F R E 0  

OMEGA-YEAS 

OMEGA-EST ) ) :  
A X 1 S . F R E O  

I I 
I FJLTER I 

014000 1159 M I  1 €NO: 

014100 1160 M I  1 E L S E  

1-MEAS - 1-MEAS + TIME-STEP; 
A X I S . F R E 0  

014100 1160 M 1 
A X I S . F R E 0  SI 

= v-8P 
P X I S . F R E O  A X I S . F R E 0 . 2  

014500 C l  E S T I W A l E  FPEOUENCY FROM N O I S Y  MEASUREMENTS; 

014100 1162 M 1 OMEGA-EST 
v-€5.1-2 + F-EST-2 4 

A X I S . F R E 0  
= F-EST-1 v-EST-1 

A X I S . F R E 0  SI A X I S . F R E 0  A X I S . F R E 0  A x I S . F R E 0  

1: (OMEGA-MEAS 2 u-EST-1 + U-EST-2 
A X I S . F R E 0  014100 1162 M 1 G-EST A X I S ,  FREO SI A X I S . F R E 0  A X I S , F R E O  

SI A X I S . F R E 0  A X I S ,  FREO 

SI A X I S  .FREO A X I S . F R E 0  

SI A X I S  .FREO AXI$.FREO 

SI A X I S .  FREO A X I S . F R E O  

015000 1163 M 1 V-EST-2 = v-EST-1 

015100 1164 M 1 V-EST-1 * OMEGA-EST 

015200 1165 M 1 U-EST-2 * u-EST-1 

015300 1166 M 1 U-EST-1 - OMEGA-YEAS 

015700 C l  T E S T  REASONABLENESS OF E S T I M A T E  

015900 1161 M 1 I F  (OMEGA-EST 
0 . 8 )  OR (OMEGA-EST > OMEGA-BP-2 

OMEGA-BP-1 A X I S ,  A X I S ,  FREO S I  A X I S . F R E 0  A X I S . F R E 0  

5 )  FREO 
015900 3161 M 1 1.2)  THEN 

S U I  TCH-N - O F F ;  
A X 1  5 .  FQE 0: 

016300 

016500 1169 M 1 I F  (OMEGA-EST 

Cl 

SI A X I S .  FREO 

D E C I D E  WHETHER OR NOT T O  CHANGE NOTCH CENTER FREOUENCY 

- OMEGA-N ) / OMEGA-N > NOTCH-WIDTH 
A X I S . F R E 0  A X I S .  FREO A X I S . F R E 0  

I F I L T E R  

I F I L T E R  

I 
I 

I 
I 
I 
I 
I 
I 

I 
I 

I F I L T E R  

I F I L T E R  

F I L T E R  I 
I F I L T E R  

I > NOTCH-WIDTH / 5 THEN 
- OMEGA-EST ) / OMEGA-N A X I S ,  FREO A X I S . F R E 0  A X I S . F R E 0  P X I S . F R L O  

016800 1110 M I  1 DO; 

016900 1111 M 2 OMEGA-N - OMEGA-EST 
SI A X I S . F R E 0  A X I S . F R E 0  

0 1 7 0 0 0  1172 M I  2 C A L L  NOTCH: 

011200 1113 M I  1 END: 

011400 1114 M I  END: 

017100 I175  M I  COUNIEQ - COUNTER 4 1; 

019915 C I  NOTCH F I L T E R S  

I F I L T E R  

I 
I F I L T E R  

I F I L T E R  

I F I L T E R  

I F I L T E R  

1 F I L T E R  

I 
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*""..-- 

I 

019920 1191 Y (  00 

020300 1193 Y 2 
SI 

020500 1195 H )  2 

021100 1197 Y 3 
S I  

021600 1201 M i  2 

021800 1202 M I  2 

021800 1202 M I  2 

022600 1208 M I  2 

023100 1211 M I  1 

1214 M I  1 

1214 H 1 
S I  
S I  

023400 1215 M I  

I F I L T E R  

I 
= M E A ~ u R E o ~ A ~ ~ I ~ U O E  ; I U-N A X I S  A X I S .  1 

F I L T E R  I - ON THEN I F  SWITCH-N 
A X I S . F R E 0 :  

I F I L T E R  
DO; 

+ G-N-o I = F-N-1 V-N-1 + F-N-2 V-N-2 
AXIS.FREO A X I S . F R E 0  A x I S . F R E O  A X I S . F n E 0  Y-N 

A X I S . F R E 0  

END; 

I F  F R E O  < NFREO T H E N  
A X I S  

= V-N 
A X I S ,  F I E 0 1  1 A X I S .  FREO 

U-N 

E N 0  ; 

I F  NFREO = 0 T H E N  
A X I S  

A T T I T U O E  = MEASURED-ATTITUOE : 
A Y I S  A X I S  

E L S E  

A T T I T U O E  s Y-N 
A X I S  A X I S . N F R E 0  

A X i S  

END: 

I 
I 
I 
I 
I 
I 
I F I L T E R  

I F I L T E R  

I F I L T E R  

I 
I 
I 
I 
I 

I F I L T E R  

I 
I 

I 
I 

I F I L T E R  

I F I L T E R  

F I L T E R  I 
I F I L T E R  
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I LOYPASS I 
1 LOYPASS I 

I LOYPASS 

1 LOUPASS 

I LOYPASS 

I LOYPASS 

I LOUPASS 

I LOUPASS 

I LOYPASS 

I LOUPASS 
I L D Y P A S S  

, 
I 

0 2 3 5 1 5  1216 M I  LOYPASS:  

023515 1216 M I  PROCEOURE: 

023525 1217 M I  

023525 1217 M I  

023530 1218 M I  

0 2 3 5 3 5  1219 :I 
0 2 3 5 4 0  1 2 2 0  M I  

023545 1221 M I  

0 2 3 5 5 0  1222 :I 
023555 1 2 2 3  M I  

E 

L 

f 

DECLARE SCAL,AR. 

DEN.  R:  

R = l A N ( 0 U E G A - A  3 . ! 4 1 6  T I M E - S T E P ) :  

2 3  
O E N = 1 + 2 R + Z R  + I :  

2 3  - 3 R 

2 3  

F-A-1 * (3 + 2 R - 2 R / OEN: 

F-A-2 = (-3 + 2 P + 2 R - 3 R 1 / DEN: 

2 3  
F-1-3 . ( 1  - 2 R + 2 R - R ) / DEN: 

3 
G-A - ( R  ) / OLN: 

0 2 3 5 6 0  1 2 2 4  M I  CLOSE LOUPASS:  

* * e *  B L 0 C K S U M M A R Y " * *  

OUTER V A R I A B L E S  USED 
OMEGA-A. T IME-STEP.  f-A-1'. F-A-2'. F-A-3.. G-A' 

023600 1225 M I  fREO-EST:  

023600 1225 M I  PROCLOURL: 

023800 1 2 2 6  M I  

023800 1 2 2 6  M I  

0 2 4 0 0 0  1 2 2 7  H 
S I  

DECLARE SCALAR. 

O W M Y .  Y-EST: 

U-EST = TAN(OMEGA-NAT-EST TIME-STEP / 2 ) :  
A X I S . F R E 0  

2 
Y-EST + Y-EST : DUMMY = 1 + 2 ZETA-EST 

A X I S . F R E 0  

2 
F-E ST- 1 . ( 2  - 2 U-EST ) / DUMMY: 

A X I S . F R L 0  

2 
F-EST-? - ( - 1  + 2 ZETA-LST Y-EST - U-EST ) / OUUMY: 

A X I S  .FREO A X I S . F R E 0  

2 
C-EST 9 ( Y - E S I  ) / DUMMY: 

A X I S . F R f 0  

0 2 4 6 0 0  1232 M I  C L O S E  FREO-EST; 

* * * *  B L 0 C K S U M Y A R V * * * e  

OUTER V A R I A B L E S  USE0 
A X I S .  FREO. OMEGA-NIT-EST. T IME-STEP.  2ETA-EST. f - E S T - I * .  F-EST-2.. G-EST. 

I FREO-EST 

I FREO-EST 

I FPEO-EST 

I FREO-EST 

I FREo-EST 

FREO-EST 

F R EO-€ S T  

I 
I 
I 
I 

F R  EO-L S T  

FREO-t  S T  

I FREO-LST 
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I 0 2 4 8 0 0  1233 MI BANOPASS: 

0 2 4 8 0 0  1 2 3 3  MI PROCEDURE: 

025000 1 2 3 4  M I  

025000 1 2 3 4  MI 

025300 1235 M 
S I  

S I  
0 2 5 4 0 0  1236 M 

025500 1231 MI 

026000 1238 MI 

0 2 6 2 0 0  1239 MI 

026400 1 2 4 0  :I 
026500 1241 MI 

026600 1242 M I  

026100 1 2 4 3  MI 

026800 1 2 4 4  MI 

026900 1 2 4 5  M I  

027100 1 2 4 6  M 

E 

SI 

S I  

S I  

S I  

021200 1 2 4 7  M 

027300 1 2 4 8  M 

021400 1 2 4 9  M 

DECLARE SCALAR DOUBLE. 

OMEGA-1. OMEGA-2. 03. 02. 01. DO. N2. DUMMY. OMEGA-C. ZETA-BP. ANGLE: 

OMEGA-1 - TAN(0MEGA-BP-1 TIME-STEP / 2 ) :  
A X I S . F R E 0  

OMEGA-2 = lAN(0MEGA-BP-2 TIME-STEP / 2 ) :  
A X I S . F R E 0  

OMEGA-C - OMEGA-2 - OMEGA-1: 

ANGLE = ANGLE-BP 3.1416 / 180: 

ZETA-BP - C O S ( A N G L E ) :  

2 
N2 9 OMEGA-C : 

03  * 2 Z E l A - B P  OMEGA-C: 

0 2  = 2 OMEGA-1 OMEGA-2 4 N2: 

01 03 OMEGA-1 OMEGA-2: 

2 2 
DO OMEGA-1 OMEGA-2 : 

O M Y Y  = 1 4 00 4 D 1  4 02 + 03: 

F-BF- 1 * ( 4  4 2 03 - 
A X I S . F R E O . B P  

2 01 - 4 DO) / DUMMY: 

F-BP-2 * ( - 6  4 2 02 - 6 DO) / OUYMV: 
AX1S.FREO.BP 

F-BP-3 . ( 4  - 2 03 4 2 01 - 4 DO) I DUMMY: 
AXIS.FREO.BP 

F-BP-4 ( - 1  4 03 - 
AX1S.FREO.BP 

G-B P = N2 / DUMMY: 
AX1S.FREO.BP 

021600 1 2 3 1  MI CLOSE BANDPASS: 

0 2 8 1 0 0  1252 111 NOTCH: 

O Z B 1 0 0  1252 MI PROCEDURE: 

028300 1253 MI 

028300 1 2 5 3  M I  

0 2 8 6 0 0  1 2 5 4  M 
S I  

S I  
028100 1255 M 

028900 1256 MI 

029000 1251 MI 

029100 1258 MI 

029300 1259 M I  

* 029400 1260 MI 

029500 1261 M I  
029600 1262 MI 

029100 1263 MI 

029800 1 2 6 4  MI 

03oooO 1265 M 
S I  

S I  

S I  

S I  

030100 1266 M 

0 3 0 2 0 0  1 2 6 7  Y 

030300 1268 11 

02 4 0 1  - DO) / DUMMY; 

D E C L A R E  SCALAR, 

OMEGA-1. OMEGA-2. OMEGA-C. N2. N 1 .  NO. 02. D 1 .  DO: 

OMEGA-1 * ( 1  - NOTCH-WIDTH ) OMEGA-N 
A X I S . F R E 0  A X I S . F R E 0  

OMEGA-? . ( 1  4 NOTCH-WIDTH 
A X I S  

1 
.FREO 

OMEGA-1 TAN(0MEGA-1 0.16 / 2);  

OMEGA-2 = TAN(0MEGA-2 0.16 / 2 ) :  

OMEGA-C OMEGA-2 - OMEGA-1; 

N 2  1 4 OMEGA-1 ONEGA-2: 

N 1  = -2  4 2 OMEGA-1 OMEGA-2: 

Ho - N2: 

02 9 1 4 OMEGA-C 4 OMEGA-1 OMEGA-2: 

01 - N 1 ;  

DO * 1 - OMEGA-C 4 OMEGA-1 OMEGA-2; 

F-N-1 - -01 / 0 2 :  
A X I S ,  FREO 

F-N-2 * -00 / 02: 
A X I S . F R E 0  

C-N-0 - N 2  / 02: 
A X I S .  FREO 

c - 1  = N 1  / 0 2 :  
A X I S . F R E 0  

G-N-2 - NO / 02: 
A X I S .  FREO 

OMEGA-N 
A X I S . F R E 0  

I BANOPASS 

I BANOPASS 

I BANOPASS 

I BANDPASS 

I BANDPASS 

I BANDPASS 

I BANDPASS 

I BANDPASS 

1 BANOPASS 

I BANOPASS 

I BANOPASS 

I BANDPASS 

I BANOPASS 

I BANOPASS 

I BANDPASS 

I BANDPASS 

I 
I BANDPASS 

I BANDPASS 

I BANDPASS 

I BANOPASS 

I NOTCH 

I NOTCH 

I NOTCH 

I NOTCH 

I 
I 
I NOTCH 

I NOTCH 

I NOTCH 

I NOTCH 

I NOTCH 

I N D I C H  

I NOTCH 

1 NOTCH 

I NOTCH 

I 
I 
I 
I 
i 
I NOTCH 030500 1 2 7 0  M I  CLOSE N O I C H :  
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